Influence of csgD and ompR on Nanomechanics, Adhesion Forces, and Curli Properties of E. coli.

نویسندگان

  • Stefano Perni
  • Emily Callard Preedy
  • Paolo Landini
  • Polina Prokopovich
چکیده

Curli are bacterial appendages involved in the adhesion of cells to surfaces; their synthesis is regulated by many genes such as csgD and ompR. The expression of the two curli subunits (CsgA and CsgB) in Escherichia coli (E. coli) is regulated by CsgD; at the same time, csgD transcription is under the control of OmpR. Therefore, both genes are involved in the control of curli production. In this work, we elucidated the role of these genes in the nanomechanical and adhesive properties of E. coli MG1655 (a laboratory strain not expressing significant amount of curli) and its curli-producing mutants overexpressing OmpR and CsgD, employing atomic force microscopy (AFM). Nanomechanical analysis revealed that the expression of these genes gave origin to cells with a lower Young's modulus (E) and turgidity (P0), whereas the adhesion forces were unaffected when genes involved in curli formation were expressed. AFM was also employed to study the primary structure of the curli expressed through the freely jointed chain (FJC) model for polymers. CsgD increased the number of curli on the surface more than OmpR did, and the overexpression of both genes did not result in a greater number of curli. Neither of the genes had an impact on the structure (total length of the polymer and number and length of Kuhn segments) of the curli. Our results further suggest that, despite the widely assumed role of curli in cell adhesion, cell adhesion force is also dictated by surface properties because no relation between the number of curli expressed on the surface and cell adhesion was found.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene.

The Escherichia coli OmpR/EnvZ two-component regulatory system, which senses environmental osmolarity, also regulates biofilm formation. Up mutations in the ompR gene, such as the ompR234 mutation, stimulate laboratory strains of E. coli to grow as a biofilm community rather than in a planktonic state. In this report, we show that the OmpR234 protein promotes biofilm formation by binding the cs...

متن کامل

The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli.

Production of curli, extracellular structures important for biofilm formation, is positively regulated by OmpR, which constitutes with the EnvZ protein an osmolarity-sensing two-component regulatory system. The expression of curli is cryptic in most Escherichia coli laboratory strains such as MG1655, due to the lack of csgD expression. The csgD gene encodes a transcription activator of the curl...

متن کامل

CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli.

Curli fibers could be described as a virulence factor able to confer adherence properties to both abiotic and eukaryotic surfaces. The ability to adapt rapidly to changing environmental conditions through signal transduction pathways is crucial for the growth and pathogenicity of bacteria. OmpR was shown to activate csgD expression, resulting in curli production. The CpxR regulator was shown to...

متن کامل

The Catabolite Repressor Protein-Cyclic AMP Complex Regulates csgD and Biofilm Formation in Uropathogenic Escherichia coli.

The extracellular matrix protects Escherichia coli from immune cells, oxidative stress, predation, and other environmental stresses. Production of the E. coli extracellular matrix is regulated by transcription factors that are tuned to environmental conditions. The biofilm master regulator protein CsgD upregulates curli and cellulose, the two major polymers in the extracellular matrix of uropat...

متن کامل

Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli.

In enterobacteria, the CsgD protein activates production of two extracellular structures: thin aggregative fimbriae (curli) and cellulose. While curli fibres promote biofilm formation and cell aggregation, the evidence for a direct role of cellulose as an additional determinant for biofilm formation is not as straightforward. The MG1655 laboratory strain of Escherichia coli only produces limite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 32 31  شماره 

صفحات  -

تاریخ انتشار 2016